Skip to contents

All functions

AP_affinity_propagation()
Affinity propagation clustering
AP_preferenceRange()
Affinity propagation preference range
Clara_Medoids()
Clustering large applications
Cluster_Medoids()
Partitioning around medoids
GMM()
Gaussian Mixture Model clustering
KMeans_arma()
k-means using the Armadillo library
KMeans_rcpp()
k-means using RcppArmadillo
MiniBatchKmeans()
Mini-batch-k-means using RcppArmadillo
Optimal_Clusters_GMM()
Optimal number of Clusters for the gaussian mixture models
Optimal_Clusters_KMeans()
Optimal number of Clusters for Kmeans or Mini-Batch-Kmeans
Optimal_Clusters_Medoids()
Optimal number of Clusters for the partitioning around Medoids functions
Silhouette_Dissimilarity_Plot()
Plot of silhouette widths or dissimilarities
center_scale()
Function to scale and/or center the data
cost_clusters_from_dissim_medoids()
Compute the cost and clusters based on an input dissimilarity matrix and medoids
dietary_survey_IBS
Synthetic data using a dietary survey of patients with irritable bowel syndrome (IBS)
distance_matrix()
Distance matrix calculation
external_validation()
external clustering validation
mushroom
The mushroom data
plot_2d()
2-dimensional plots
predict_GMM() predict(<GMMCluster>)
Prediction function for a Gaussian Mixture Model object
predict_KMeans() predict(<KMeansCluster>)
Prediction function for the k-means
predict_MBatchKMeans() predict(<MBatchKMeans>)
Prediction function for Mini-Batch-k-means
predict_Medoids() predict(<MedoidsCluster>)
Predictions for the Medoid functions
silhouette_of_clusters()
Silhouette width based on pre-computed clusters
soybean
The soybean (large) data set from the UCI repository