Package index
-
AP_affinity_propagation() - Affinity propagation clustering
-
AP_preferenceRange() - Affinity propagation preference range
-
Clara_Medoids() - Clustering large applications
-
Cluster_Medoids() - Partitioning around medoids
-
GMM() - Gaussian Mixture Model clustering
-
KMeans_arma() - k-means using the Armadillo library
-
KMeans_rcpp() - k-means using RcppArmadillo
-
MiniBatchKmeans() - Mini-batch-k-means using RcppArmadillo
-
Optimal_Clusters_GMM() - Optimal number of Clusters for the gaussian mixture models
-
Optimal_Clusters_KMeans() - Optimal number of Clusters for Kmeans or Mini-Batch-Kmeans
-
Optimal_Clusters_Medoids() - Optimal number of Clusters for the partitioning around Medoids functions
-
Silhouette_Dissimilarity_Plot() - Plot of silhouette widths or dissimilarities
-
center_scale() - Function to scale and/or center the data
-
cost_clusters_from_dissim_medoids() - Compute the cost and clusters based on an input dissimilarity matrix and medoids
-
dietary_survey_IBS - Synthetic data using a dietary survey of patients with irritable bowel syndrome (IBS)
-
distance_matrix() - Distance matrix calculation
-
external_validation() - external clustering validation
-
mushroom - The mushroom data
-
plot_2d() - 2-dimensional plots
-
predict_GMM()predict(<GMMCluster>) - Prediction function for a Gaussian Mixture Model object
-
predict_KMeans()predict(<KMeansCluster>) - Prediction function for the k-means
-
predict_MBatchKMeans()predict(<MBatchKMeans>) - Prediction function for Mini-Batch-k-means
-
predict_Medoids()predict(<MedoidsCluster>) - Predictions for the Medoid functions
-
silhouette_of_clusters() - Silhouette width based on pre-computed clusters
-
soybean - The soybean (large) data set from the UCI repository