All functions

AP_affinity_propagation()

Affinity propagation clustering

AP_preferenceRange()

Affinity propagation preference range

Clara_Medoids()

Clustering large applications

Cluster_Medoids()

Partitioning around medoids

GMM()

Gaussian Mixture Model clustering

KMeans_arma()

k-means using the Armadillo library

KMeans_rcpp()

k-means using RcppArmadillo

MiniBatchKmeans()

Mini-batch-k-means using RcppArmadillo

Optimal_Clusters_GMM()

Optimal number of Clusters for the gaussian mixture models

Optimal_Clusters_KMeans()

Optimal number of Clusters for Kmeans or Mini-Batch-Kmeans

Optimal_Clusters_Medoids()

Optimal number of Clusters for the partitioning around Medoids functions

Silhouette_Dissimilarity_Plot()

Plot of silhouette widths or dissimilarities

center_scale()

Function to scale and/or center the data

cost_clusters_from_dissim_medoids()

Compute the cost and clusters based on an input dissimilarity matrix and medoids

dietary_survey_IBS

Synthetic data using a dietary survey of patients with irritable bowel syndrome (IBS)

distance_matrix()

Distance matrix calculation

external_validation()

external clustering validation

mushroom

The mushroom data

plot_2d()

2-dimensional plots

predict_GMM() predict(<GMMCluster>)

Prediction function for a Gaussian Mixture Model object

predict_KMeans() predict(<KMeansCluster>)

Prediction function for the k-means

predict_MBatchKMeans() predict(<MBatchKMeans>)

Prediction function for Mini-Batch-k-means

predict_Medoids() predict(<MedoidsCluster>)

Predictions for the Medoid functions

silhouette_of_clusters()

Silhouette width based on pre-computed clusters

soybean

The soybean (large) data set from the UCI repository