Package index
-
AP_affinity_propagation()
- Affinity propagation clustering
-
AP_preferenceRange()
- Affinity propagation preference range
-
Clara_Medoids()
- Clustering large applications
-
Cluster_Medoids()
- Partitioning around medoids
-
GMM()
- Gaussian Mixture Model clustering
-
KMeans_arma()
- k-means using the Armadillo library
-
KMeans_rcpp()
- k-means using RcppArmadillo
-
MiniBatchKmeans()
- Mini-batch-k-means using RcppArmadillo
-
Optimal_Clusters_GMM()
- Optimal number of Clusters for the gaussian mixture models
-
Optimal_Clusters_KMeans()
- Optimal number of Clusters for Kmeans or Mini-Batch-Kmeans
-
Optimal_Clusters_Medoids()
- Optimal number of Clusters for the partitioning around Medoids functions
-
Silhouette_Dissimilarity_Plot()
- Plot of silhouette widths or dissimilarities
-
center_scale()
- Function to scale and/or center the data
-
cost_clusters_from_dissim_medoids()
- Compute the cost and clusters based on an input dissimilarity matrix and medoids
-
dietary_survey_IBS
- Synthetic data using a dietary survey of patients with irritable bowel syndrome (IBS)
-
distance_matrix()
- Distance matrix calculation
-
external_validation()
- external clustering validation
-
mushroom
- The mushroom data
-
plot_2d()
- 2-dimensional plots
-
predict_GMM()
predict(<GMMCluster>)
- Prediction function for a Gaussian Mixture Model object
-
predict_KMeans()
predict(<KMeansCluster>)
- Prediction function for the k-means
-
predict_MBatchKMeans()
predict(<MBatchKMeans>)
- Prediction function for Mini-Batch-k-means
-
predict_Medoids()
predict(<MedoidsCluster>)
- Predictions for the Medoid functions
-
silhouette_of_clusters()
- Silhouette width based on pre-computed clusters
-
soybean
- The soybean (large) data set from the UCI repository