GloVe (Global Vectors for Word Representation)

Glove(input_cooccurences = NULL, output_vectors = NULL,
  vocab_input = NULL, model_output = 0, iter_num = 5,
  learn_rate = 0.1, save_squared_grads_file = NULL,
  alpha_weight = 0.75, cutoff = 100, binary_output = 0,
  vectorSize = 10, threads = 1, trace = FALSE)

Arguments

input_cooccurences

a character string specifying the path to the cooccurences text file

output_vectors

a character string specifying the path to the output-vectors-file(s) (the output depending on the binary_output parameter can be a .bin and/or a .txt file)

vocab_input

a character string specifying the path to the vocabulary text file (the output file of the vocabulary_counts function)

model_output

an integer specifying the model-for-word-vector-output (for text output only). [ 0: output all data, for both word and context word vectors, including bias terms; 1: output word vectors, excluding bias terms; 2: output word vectors + context word vectors, excluding bias terms ]

iter_num

an integer specifying the number of training iterations

learn_rate

a float number specifying the learning rate

save_squared_grads_file

either NULL or a character string specifying the location where the save_squared_grads_file data should be saved (accumulated squared gradients)

alpha_weight

a float number specifying the parameter in exponent of the weighting function

cutoff

a number specifying the cutoff parameter of the weighting function

binary_output

an integer specifying the format output of the saved data (0: text, 1: binary, 2: both)

vectorSize

a number specifying the dimension of word vector representations (excluding the bias term)

threads

an integer specifying the number of threads to run in parallel

trace

either TRUE or FALSE. If TRUE information will be printed out

Value

a character string specifying the location of the saved data and the number of the word vectors

References

https://github.com/stanfordnlp/GloVe

http://nlp.stanford.edu/projects/glove/

http://nlp.stanford.edu/pubs/glove.pdf

Examples

# library(GloveR) # gl = Glove(input_cooccurences = '/data_GloveR/COOCUR_output.bin', # output_vectors = '/data_GloveR/vectors', # vocab_input = '/data_GloveR/VOCAB.txt', # model_output = 2, iter_num = 5, learn_rate = 0.05, save_squared_grads_file = NULL, # alpha_weight = 0.75, cutoff = 10, binary_output = 0, vectorSize = 50, threads = 6, trace = TRUE)